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Summary

This paper describes one class of robust estimators, the so called
L-estimators. The main representants of this class, i.e., the L -norm
estimator, the regression quantiles, the a-trimmed and a-Winsorized least
squares estimators are described and some properties of them summarized.
Computational aspects of the introduced estimators are considered and a
short description of the implementation of the algorithms on the ODRA 1305
computer is given. Also some applications of the introduced estimators
are presented. They are concerned with establishing a dependency between
arterial blood pressure readings recorded automatically and in a
traditional way.

1. INTRODUCTION

Let us ¢tonsider the linear model of the form

y=XQ +e , (1.1)
1
where y = (y1 geiee ,yn) is the vector of independent observations, X =
(xij)' 1220 Lonie oS J =2 lyeen Py is the nxp design matrix, Q =
’ ’
(Q1 yoes .Qp) is the vector of unknown parameters and e = (e1 s .en)

is the vector of independent, identically distributed (iid) errors. The
distribution function F describing the probability distribution of e is
generally unspecified, we assume only that it belongs to an appropriate
family F of distribution functions. In the following we shall assume that
xi1=l, i=1,...,n, i.e., that we have a model with an intercept. Our main
interest is in robust estimation of the vector of parameters Q with
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emphasis on the so callea distributional robustness. By this we mean
estimators which are independent of the form of F, i.e. especially which
are not so sensitive to longtailed distributions comprising possibly
outlying observations ("outliers").

For the location submodel

Q + e, i ® 1 0s0mn. 3 (1.2)

three broad classes of robust estimators, i.e., M- , L- and R-estimators
were introduced and intensivély studied. For more infbrlations see,
e.g., the monographs of Huber (1981) or Hampel et al. (1986), where the
finite sample as well as asymptotic properties of these estimators are
described.

The M- and R-estimators for the location submodel were extended in a
straightforward way to the linear model - what was not the case for the
L-estimators though they are computationally so appealing.

Despite several attempts it seems to be only Koenker and Bassett’'s
(1978) concept of regression quantiles as an extension of the sample
quantile to the linear model which provides a reasonable solution and
yields a reasonable robust estimator of the vector of parameters Q . The
concept of regression quantiles offers a basis not only for the
construction of robust L-estimators in a general linear model but also for
the construction of robust tests of linear hypotheses and for a robust
analysis of variance. The same authors suggested also the a-trimmed least
squares estimator L(a) as an extension of the a-trimmed mean to the linear
model. Later on Juredkovd (1983 b) proposed and studied the a-Winsorized
least squares estimator W(a) as an extension of the a-Winsorized mean.

The theoretical properties of regression quantiles, a-trimmed and
a-Winsorized least squares estimators were intensively studied, among
others, by Koenker and Bassett (1978), Ruppert and Carroll (1978, 1980),
Koenker (1983), Juretkowd (1983a, 1983b, 1984) and Antoch and Juredkowd
(1985). Numerical behavior based on broad Monte Carlo study is described
in Antoch (1985) and Antoch et al.(1984). The construction of robust tests
of hypotheaeQ in linear model based on L-estimators was considered e.g, in
the papers of Koenker and Bassett (1982), Jureikowa (1983) and ﬁuppert and
Carroll (1980). Fast algorithm for model choice in general linear mcdel
was described by Antoch (1986).

In the following we describe in sectiom 2 the Ll-nor- approach in
regression. In section 3, we introduce the concept of regression quantiles
and show the relation of this concept with the basic concept of
M-estimators. In section 4 we introduce the concept of a-trimmed
estimators and show some their asymptotic properties., In section 5 the
a-Winsorized estimators are introduced. In section 6 a general discussion
of. the introduced estimators is given. In section 7 we show computational
algorithms for evaluation of the estimators introduced in sections. 2-4., In

section 8 we show a medical example (blood pressure data) in which we



evaluate and compare the considered estimators. Section 9 contains some
final remarks relating to the use of the considered estimators when
applied to the medical data.

2. Ll- NORM APPROACH IN REGRESSION

Let ue consider the model (1.1). A Ll—norl estimator of Q is nothing
else than a vector Q° which minimizes the sum of absolute deviations from
the expected value, i.e.,

o n P
Q = arg min I Y, - 2 x,.Q . (2.1)
@ i=1 71 4o THI
Due to historical and mnemotechnical reasons we shall denote this
estimator in subsequent text also by L1.
It has been known for some time, see e.g. Armstrong (1979), that
(2.1) is equivalent to the following linear programming problem: Minimize

n
Z (P, + N,) (2.2)
Es : & i
subject to
P
S Jfl xiij + Ni - Pi =0, Pi >0, Ni >0, (2.3)
1.8 1,0009n0
where Pi and Ni are given by
_ P
Pi = max (O,yi - jfl ”1;“5" (2.4)
p :
Ni = max (0, - (yi - jil xijﬁj)) . A S "

A Ll—nor- regression passes always through at least p points
belonging to the considered cluster of points-individuals (p=rank of the
matrix X in 1.1).

An elementary introduction to this problem may be found in Sposito,
Smith and McCormick (1978). An efficient algorithm for solving (2.2) using
a modified simplex method was given by Barrodale and Roberts (1973, 1974).
Lately Armstrong, From and Kung (1979) gave another version of this
algorithm. A method for computing linear regression in Ll-norl stepwise
with downdating and updating the rows and columns was proposed by Peters
and Willms (1983). Their program uses partially the procedure of Barrodale
and Roberts (1974).



3. REGRESSION QUANTILES

Let us consider the model (1.1) and let a, 0<a<l , be a fixed
constant. Koenker and Bassett (1978) introduced a-regression quantiles
Q(a) as any solution of the minimization problem

n

min 2 [aP; + (1-a) N1, (3.1)
i=1

where P1 and Ni' i=1,...,n , are given by (2.4). This is nothing else
than to minimize the sum of very simply weighted residuals, i.e.,

n
min 151 LA 5 (3. 2)
Q
where
P a iff ri> 0
> O R D ] X380 yumWy = { S (18'.8)
o7 7409 1 a-1 iff r.< 0

It is interesting to notice that an a-regression quantile Q(a) is in
fact an M-estimator, i.e., an estimator which yields the solution of the
minimization problem

n P
min izl P (Yi > Jfl x; 5 Qj) ’ (3.4)
where
ax x>0
p(x) = (3.5)
(a-1) x x <0 ’

This fact is very important because it enables to use a lot of
general results derived for M-estimators in linear model when describing
the behavior of regression quantiles and other estimators based on them.

For the case a = 0.5, which gives the so called regression median,
one can easily see that the solution of (3.1) coincides with the Ll-norn
estimator.

Koenker and Bassett (1978) studied the asymptotic behavior of the
regression quantiles and showed that they appear to have analogous
properties to the ordinary sample quantiles of the location model. They
established asymptotic normality of the regression quantiles and pointed
out that these can be easily computed by a modification of the linear
programming algorithm (in fact it is sufficient to wmocdify slightly the
procedure for the Ll—norm estimator). Later on Ruppert and Carroll (1980)
and Juret¢kowd (1984) derived similar asymptotic results under less
restrictive conditions.



It is important to notice that all asymptotic results for regression
quantiles have sense only in the case when we consider the model (1.1)
with intercept. Otherwise it is necessary to supplement the model by an
additional dummy intercept and to estimate it simultaneously with other
components of the vector of parameters.

4. a-TRIMMED LEAST SQUARES ESTIMATOR

Koenker and Bassett (1978) suggested the a-trimmed least squares
estimator L(a) in the following way. Let 0<a<l1/2 be a fixed constant and
let Q(a), resp. Q(1-a), be the corresponding regression quantiles. Remove
every observation A such that

P P
¥y = jzl xiij(a) <0 2 I jil xijﬂj(l—a) >0, (4.1)
’
where Q(a) = (Ql(a))---)op(a)) ’

Q(1-a) = (§(1-a),...,q (1-a)) .

Then the a-trimmed least squares estimator L(a) is defined as the
ordinary least squares estimator computed from remaining observations. In
other words, if we construct the diagonal matrix D=diag (dll""'dnn)
such that dii=° if (4.1) holds, resp.dii=1 otherwise, then the a-trimmed
least squares estimator L(a) is the classical least squares estimator
computed from the model

Dy = DXQ + De (4.2)
instead from the model (1.1). It means that

L(a) = (X DX)"X DY (4.3)
The idea of this estimator is graphically illustrated for the case of
simple regression line in figures la and 2b.

The choice of a symmetrical trimming is not crucial. On the contrary,
in the case of nonsymmetrical distribution of errors a nonsymmetrical
trimming may be preferable. Simple modification of the procedure Jjust
2<1 and
computing the corresponding regression quantiles Q(al), Q(az). Then one

described consists in fixing of two constants al,az, 0<a1<1/2<a

will follow the scheme described just before with Q(al) and Q(az) instead
with Q(a) and Q(1l-a).

According to common experience.based both on theoretical results and
on simulations and practical applications the a-trimmed least squares
estimator seems to be the most important representant of the class of
robust estimators. Therefore, we shall present here in more details the
conditions under which the distribution of this estimator as well as some

its asymptotic properties can be derived. These quite general
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Fig. 1. a) Original data with corresponding regression lines evaluated
from regression quantiles Q(a)=(01(a).92(a)) and
Q(a)=(Q,(1-a),Q,(1-a)),

b) Data after trimming with the resulting oa-trimmed least
squares estimator L(a):(ll(a).lz(a))-

conditions are due to Juredkowd (1984); for some more restrictive ones
see, e.g., the paper of Ruppert and Carroll (1980).
Condition (A): Suppose that F(x) is a distribution function of the error
term e such that:
- F(x) is absolutely continuous with density f(x) such that

£(x)>0 for x e [r'l(a) L e Bl tayt ¢ elpniie 50}

Fl(t) =sup { x: F(x) <t} , 0<a<1/2 fixed;
- the derivative f'(x) of f(x) exists and is bounded and

positive in the neighbourhood of F-l(a), F-l(l-a)
Condition (B):

- suppose that there exists a positive definite matrix C such

i ’
that n 1 X XinsTRwaCieas) i Toeed 3
=1n g
- max n e | ks w XD (1) as BATE> S H
1<j<p el g L7



max n~1/2 ' x5 | —> 0 as n— o®
1<i<n,1<j<p
X1 =1 , i=1l,..0,n .

It was shown by Juredkowd (1984) that wunder fulfilling of the
conditions (A) and (B) the distribution of the a-trimmed least squares
estimator is asymptotically normal, i.e.,

ta¥2(L(a) - @) ~ N0, P@F) ¢') as n— o, (4.4)

where Np(n, ¥) stands for the p-dimensional normal distribution with
expectation a and covariance matrix ¥ . More precisely, in our case

-1
-2 F "(1-a)
o%(a,F) = (1-2a) [J = x2dF(x) + 2a (F 1(a))2 ] (4.5)
F “(a)

is the asymptotic variance of the a-trimmed mean in the location case and
C-1 is the asymptotic covariance matrix derived from the cross-products of
the columns of the design matrix.

Relations between L- and M-estimators in linear model were studied by
Juretkowd (1983a, 1983b). Under the fulfilling of the conditions (A) and
(B) she has shown that

2% L) -M@) ] — 0 as n— ®, (4.8)
where M(a) is Huber’s M-estimator with p function of the form
1

(a)

1 .

Ixl Fl(a) Ix| > F~
p(x) = {
(a)

2

J (4.7)
x |x| < F

It means, that M(a) minimizes (3.4) when we use p(x) of the form
(4.7).

A modification of this estimator which is moreover resistant to the
existence of leverage points was described by Antoch and Juredkowa (1985).

Some principal results describing the behavior of L(a) when applied
to real data can be found in Ruppert and Carroll (1980) and Antoch and
Juretkowd (1985). More profound numerical Monte Carlo studies were
performed by Antoch (1985) and Antoch et al. (1984).

5. «a-WINSORIZED LEAST SQUARES ESTIMATOR

The concept of an a-Winsorized least squares estimator W(a) was
introduced by Jureikowa (1983 b) in the following way. Suppose that a, 0 <
a < 1/2 , is a fixed constant, Q& ) and Q(le ) are the corresponding
regression quantiles and L(a) is an a-trimmed least squarea estimator.
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Than the a-Winsorized least squares estimator W(a) is defined by
W(a) = n~! {[na]l (Q(a)+Q(1-a))+(n-2[nal) L(a)} . (5.1)

In other words, (5.1) is a direct generalization of the a-Winsorized mean
in the location case (1.2), because we replace the trimmed observations by
the corresponding regression quantiles with weights equal to the trimming
proportions.

6. GENERAL DISCUSSION OF THE INTRODUCED ESTIMATORS

It is generally known, that the least squares (LSE) estimators of
parameters in linear model are very sensitive to single outliers or some
amount of points-individuals coming from other distribution than that
which is assumed for the main part of data. Therefore, there is a need to
search for estimators obtained by other methods than LSE, with the hope,
that the employed methods will not be much influenced by the outliers.

The Ll-norm estimator was introduced historically first - as compared
to other estimators considered in our paper. However, especially when the
sample size is small, the estimate of the parameters Q , can be quite
different from ertimates obtained by other methods. This fact contributes
to the opinion contirmed by Monte Carlo studies, that this estimator can
be not reliable and satisfactory enough. When using this estimator for
real data one should keep these facts in mind. For more details see, e.g.,
Antoch (1985).

The concept of a-trimmed least squares estimator is intuitively very
appealing: We find from each side of the regression line or regression
plane '"remote" points which might give large residuals (see Fig.la).
These pcints are likely to distort the regression equation fitted to the
main (central) part of the points contained in the considered cloud of
data points. We remove these "remote" points from our data set and compute
from the remainder the ordinary least squares estimator L(a) (see Fig 1b)
which now is not influenced by the "remote" points removed from the data.

The a-Winsorized estimators W(a) can throw additional light on the
"remote" points, if any. The computation of these estimators is trivial in
the case when we have computed already the a-trimmed least squares
estimators (the computational algorithms are given in the next sectin of
this paper). It is highly recommendable to compute always W(a) together
with L(a) for the additional control. A remarquable difference between
them ought to be a signal for us to increase ou: attention and to
reanalyse the data with the highest possible care.

The behavior of the estimators considered by us was studied in
simulation experiments described by Antoch (1985) and Antoch et al.

(1984). Various measures of errors like integrated mean square error etc,
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between the true known model and estimated regression curves were
calculated for the estimators described in previous sections. Generally,
the results were the best for the a-trimmed least squares estimator L(a).
Namely, the measures of errors for L(a) were in the same situations less
or equal to those for the W(a) or the Ll—norn estimator. Nevertheless, it
makes sense to compute W(a) always together with L(a) as an indicator of
very remote outliers. The variant (iii) in section 8 provides a very nice
illustration of the case. Considering the a-trimmed estimators let us
remind, that the trimming proportions must be large enough, at least as
large as the expected percentage of distorted data, but preferably
slightly larger. It is always necessary to bear in mind that for fixed a
Just approximately [na] observations will be trimmed off from "both sides"
of the bulk of the data - also together 2[na] observations. Therefore, it
is preferable to overestimate the percentage of bad data than to

underestimate it. This means that we should use preferably a larger a .

7. COMPUTATIONAL ASPECTS OF DESCRIBEP METHODS

L, - NORM ESTIMATOR
Hitherto now the algorithm proposed by Barrodale and Roberts (1973)

(and some of its generalizations) seems to be the most convenient one. It

1

is in fact modification of the simplex method. The acceleration against
the ordinary simplex method (algorithm) is caused by a trick enabling to
pass through several vertices in one step. Some CPU times recorded on the
ODRA 1305 computer are shown in Table 1. The solution is not generally
unique, but this is a very rare case in practice. Nevertheless, in the
case of multiple solutions some rule must be given which selects a unique
one. Such a rule may be, e.g., that which choses the shortest in the

Lz—norm among all avaiable solutions.

RFGRESSION QUANTILES

Regression quantiles can be evaluated by an easy modification of the
algorithm for the Ll-norm estimator, which consists in simple adaptation
of the object function according to (3.1). It is sufficient to add to .the
formal parameters of the subroutine for calculation of the Ll-norl
estimator an additional parameter ALPHA ( corresponding to a, the desired
portion of trimming) and to change adequately the form of the object
function. CPU times are practically the same as in the case of a L.-norm

1
estimator.
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Table 1. Times of run of the programs for problems of various sizes - CPU

times of ODRA 1305 computer in minutes.

N - number of rows , P - number of columns in the design matrix
X appearing in (1.1),
L1 - Ll-nor- estimator,
L(.25) - a-trimmed LSE estimator with a =0.25
LSE1 - classical LSE estimator calculated by QR decomposition
(Lawson-Hanson subroutine)
LSE2 - classical LSE estimator calculated by modified
Gauss-Jordan pivots (SABA package)
N P L1 L(.25) LSE1 LSE2
300 6 5.03 - 0.34 0.09
200 6 2.45 5.02 0.23 0.06
100 6 0.48 1.53 0.12 0.03
50 6 0.23 0.43 0.06 0.02
300 1Y 9.38 - - 0.16
200 : i 6.54 10.12 0.54 0.11
100 11 2.01 3.3%7 0.27 0.06
50 11 0.44 1.19 0.14 0.03
200 15 9.13 - 1.26 0.16
100 15 3.12 5.09 0.43 0.09
50 15 1.14 1.59 0.22 0.05
These times are to be read in the following manner: CPU = 1.59 means 1

minute and 59 seconds.

a-TRIMMED LEAST SQUARES ESTIMATOR

The algorithm for computation of an a-trimmed least squares estimator

L(a)
(a)
(b)

(c)
(d)

is the following:

Fix a, 0 < a < 1/2 ;

Compute a and (1-a) regression quantiles Q(a) and
Q(-a) ;

Remove '

'outliers" according to (4.1) ;
Compute the classical least squares estimator from
remaining observations.

a-WINSORIZED LEAST SQUARES ESTIMATOR

The algorithm for computation of an a-WINSORIZED least

estimator W(a) is the following:

(e)

(£)

Proceed (a) - (d) of the preceding algorithm for
computation of the a-trimmed least squares estimator

L(a) ;

Use the formula (5.1) .

One can see that the computation of W(a) is trivial in the case

have already computed L(a).

practically the same.

squares

when we

CPU times for both these two estimators are
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THE CLASSICAL LEAST SQUARES ESTIMATOR

For the computation of the least squares estimator we have used an
algorithm based on the QR decomposition of the design matrix X by means of
Householder transformations. The program uses subroutines which were
originally elaborated by Lawson and Hanson (1974) and slightly modified by
Marazzi (1980) and Antoch (1986).

All these algorithms were implemented in FORTRAN IV on the ODRA 1305
computer in the Institute of Computer Science of the Wroclaw University in
the form of three separate programs. The general pattern of the programs
is similar to that of programs from the package SABA elaborated in the
same place. Each program can run under several options establishing mainly
the way of reading in the data and printing partial or full results. The
options are chosen by declaring logical variables at the beginning of the
program. The meaning of various variables and parameters is described in
the formal description of each program. The calculations may be repeated
for several sets of the data or their various subsets. For more details
see the Report N-159 of Antoch, Bartkowiak and Pekalska (1986). Antoch
prepared also a version of computing programs for the IBM PC compatible
microcomputers.

In Table 1 we show CPU times of run of the programs on an ODRA 1035
computer. We consider computation times of the Ll-norm estimator L1, the
a-trimmed least squares estimator L(.25) and the classical least squares
estimator LSEl computed using the QR decomposition.The programs have run
for randomly generated data sets with p=6, 11, 15 variables snd n = 50,
100, 200, 300 individuals.

For comparison we present also CPU times of calculations of the
classical least squares estimator LSE2 computed using the program PD-ABA12
from the SABA package (this program uses modified Gauss-Jordan
transformations).

Another presentation of CPU times of run of the program for
evaluating a Ll-norm estimator was published by Armstrong et al. (1979),
pp.178. They used a CDC 6600 computer. Their conclusion was that the
number of parameters may not exceed 25 and the number of observations may
not exceed 1000. Let us recall that they applied a different algorithm for
solving the regression problem in Ll-norm then that we have used for our

computations.

8. MEDICAL EXAMPLE

We shall consider data collected in Lower Silesia Medical Diagnostic
Center in Wroctaw. The data come from an experiment described in more
details by Bartkowiak, Ruta and Wiodarczyk (1985). Here we shall take into
account only two variables, i.e.:

¥y - systolic (resp. diastolic) blood pressure recorded traditionally -
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in the position "sitting";
x - systolic (resp. diastolic) blood pressure recorded automatically

using the Avionics 1905 pressurometer - also in the position

"sitting".
We want to establish a linear relationship y = a + bx for
prediction of y for given value of x . In this paper we do it for three

groups of data (each group of data comprises the appropriate values of

the variable x and y):

(a) group I comprises systolic blood pressure (BP) measurements for 117
women ;

(b) group II comprises systolic BP measurements for.119 men;

(c) group III comprises diastolic BP measurements for 117 women (these
women are the same as in group I).

The scatterdiagrams of points-individuals characterized by the
observed values (x,y) revealed no big outliers. In this situation all the
considered estimators should give similar results not too different from
those yielded by the classical least squares method. In such circumstances
we could not demonstrate the advantages of the a-trimmed and a-Winsorized

least squares estimators. To do this, we introduced artifically into each

group of data .ne outlier. In particular, we made the following
distortions:
(i) in group I we changed the value (x,y) = (105,95) which

has been observed for the individual no. 1, to the value

(105,195);

(ii) in group II we changed the value (x,y) = (140,120),

which has been observed for the individual no. 1, to

the value (140,320);
(iii) in group III we changed the value (x,y) = (70,70),

which has been observed for the individual no. 1, to

the value (70,700).

In this way we produced some errors which are likely to occur wher
punching the data or missinterpreting one’s notices.

The.  scatterdiagrams of the distorted data are given in figures 2, 3
and 4 .

For each group of the data we calculated the ordiunary least squares
estimator, the Ll-norm estimator, the a-trimmed and a-Winsorized least
squares estimators with a = 0.01 and a = 0.1 . This was done for the
orginal (i.e. undistorted) and the distorted (according to the changes
described above: in points (i)-(iii)) data sets as well. The results are
summarized in Tables 2, 3, 4 . In fhe following part of this section we
shall provide detailed discussion of the results.

Ad (i). The estimates of the parameters a and b obtsined both for the

original and the distorted data are summarized in Table 2 .
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Table 2. Set I . Estimates of the parameters a and b of the regression y =
’
a + bx. Distortion: (x,y) = (105,95) was changed to (x,y ) =
(105,195) .

Original data Distorted data
Method of estimation

a b a b
LSE 10.81 0.96 15.69 0.93
Ll-norm 5.00 1.00 5.00 1.00
0.1 - trimmed 8.57 0.97 8.57 0.97
0.1 - Winsorized 9.17 0.97 9.31 0.97
0.01 - trimmed 9.70 0.97 19.06 0.94
0.01 - Winsorized 9.91 0.97 14.15 0.94

Looking at the results for original datms we see that they are similar
with except of those corresponding to the Ll-norl estimator. Quite other
situation is met in the case of distorted data. The least squares
estimates of a and b changed in a natural way corresponding to the shift
in the y value for the individual no. 1 . On the other hand, the Ll-norl
estimate was not influenced by the outlier at all. To obtain the a-trimmed
and the a-Winsorized least squares estimates, for a = 0.01 two
regression lines, i.e. y = 0.83x and y = 154,16 + 0.38x , were
constructed. These lines trimmed off four individuals (observations) which
are marked in Fig.2 . Looking at this figure one can see that each of the
regression lines has trimmed off only those two points, through which it
passed through, i.e., two points from the top and two points from the
bottom of the corresponding scatterdiagram. The a-trimmed and a-Winsorized
least squares estimates for the original and distorted data differ,
however this difference is much smaller than those for the least squares
estimates.

For a = 0,1 two regression lines, i.e. y = 5.040.8x and y = 20.0+x,
were constructed. They trimmed off, apart from the four individuals
mentioned above another 23 individuals (observations). After removing all
these 27 points we had still 90 observations for further calculations.

Looking at Table 2 and comparing the 0.1- trimmed and 0.1-Winsorized
least squares estimates both for the original and the distorted data we
state that they are practically the same in both situations; moreover,
they are near to the classical least squares estimates for the original
data.
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Fig. 2. Trimming off observations in group I. The distorted point
(105,195) is indicated by an arrow.
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Ad (ii). The estimates of the parameters a and b obtained both for the
original and the distorted data are summarized in Table 3.

Table 3. Set II. Estimates of the parameters a and b of the regression y =
’
a + bx. Distortion: (x,y)= (140,120) was changed to (x,y )=
(140,320).

Original data Distorted data

Method of estimation

a b a b
LSE 21.16 0.87 22.03 0.87
Ll—norm 17.78 0.89 17.77 0.89
0.1 - trimmed 23.67 0.85 23.67 0.85
0.1 - Winsorized 24.14 0.85 24.14 0.85
0.01 - trimmed 19.69 0.88 19.78 0.88

0.01 - Winsorized 19.23 0.88 19.33 0.88

From the results for the original data one can see again that they
are similar with except of those corresponding to the Ll—norm estimator.
The situation for the distorted data is different than in the previous
case. Despite the fact that the dis‘~rtion was more serious (we have
changed the value (x,y) = (140,120) to the value (140,320)), the least
square estimate of the parameter b remained the same and the estimate of
the parameter a changed only a little. This seems to be caused by the fact
that the x value of the distorted observation lies approximately in the
middle of the range of values for x , so that it is solely the intercept
which was slightly influenced, not the slope.

To obtain the a-trimmed and the a-Winsorized estimates, for a = 0.01
two regression lines, i.e., Yy = -3.0+x, and y =15.38+1.15x were
constructed. These lines trimmed off five individuals (observations) ,
-which are marked in Fig.3. Looking at this figure one can see that the
first regression line trimmed off two individuals from the bottom of the
scatterdiagram, while the second one trimmed off three points from the
top, including the outlier. In the last case the regression line does not
pass through the outlier. The a-trimmed and a-Winsorized least squares
estimates of a and b for the original and distorted data are practically
the same.

For a = 0.1 two other regression lines, i.e., y = 16.0+0.8x and y =
36.36+0.86x , were constructed. They trimmed off, apart from the five
individuals mentioned above, another 25 individuals. After removal all
these 30 points we had still 89 individuals for further calculations.
Again, comparing in Table 3 the O}i-trimmed and the 0.1-Winsorized least
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Fig. 4. Trimming off observations in group III. The distorted point
(70,700) is indicated by an arrow.

remote observation) can influence the resulting estimate despite small
weights put on the appropriate regrssion quantiles. A considerable
difference between two 0.0l-trimmed and the 0.01-Winsorized least squares
estimates of the parameters a and b is thus really a very good indicator
of peculiarities in the data.

For a = 0.1 two other regression lines, i.e., y = -10+x and y = 15+x,
were constructed. They trimmed off, apart of the four individuals
mentioned above, 27 another individuals (observations). After removal all

these 31 individuals we had still 86 of them for further calculations.
Comparing in Table 4 the 0.l-trimmed and the 0.1-Winsorized least squares

estimates both for the original and the distorted data, one can see that
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squares estimates both for the original and the distorted data, one can
see that they are practically the same in both situations.

Ad (iii). In this group of data the distortion was really big. The
estimates of the parameters a and b for the original and the distorted
data are summarized in Table 4 .

Table 4. Set III. Estimates of the parameters a and b of the regression
y = a + bx . Distortion: (x,y) = (70,70) was changed to (x,y’') =

(70,700).
Original data Distorted data
Method of estimation
a b a b

LSE 4.99 0.98 41.00 0.61
Ll—norm 12.22 0.89 12.22 0.89
0.1 - trimmed 10.38 0.91 10.67 0.91
0.1 - Winsorized 8.90 0.93 9.13 0.92
0.01 - trimmed 7.62 0.94 7.81 0.94
0.01 - Winsorized 7.36 0.95 19.23 0.86

We can see from the results obtained for the original data, that they
differ very much in the estimate of the intercept and very little in the
estimate of the slope. The data have generally a larger spread in the
y-values (there seem to be two or three larger outliers which could
influence the estimate of the intercept even for the original, undistorted
data set) . It is again the Ll-norn estimate which differs substantially
from all the other ones.

Quite other situation is met in the case of distorted data. The least
squares estimates of a and b changed substantially in a natural way
corresponding to the big shift in the y value for the individual no. 1 .
On the other hand, the Ll-norm estimate was not influenced by the outlier
at all. To obtain the a-trimmed least squares estimates for a = 0.01 two
regression lines, i.e., y = 1353.3-9.3x and y = -2.0+0.8x , were
constructed. They trimmed off four individuals.

Looking at Fig. 4 ,one can see that the first regression line has
trimmed off two individuals, including the outliers from the top of the
scatterdiagram, while the second one trimmed off two points from the
bottom. Therefore the a-trimmed estimator was not influenced by the
outlier and the values of the estimates a and b for the original and
distorted data are practically the same.

On the contrary, the a-Winsorized least squares estimator constructed
in this case can serve as a very good example of the fact merntioned in

sections 5 and 6, namely, how the existence of only one big outlier (a
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they are practically the same in both situations.

Let us summarize several general conclusions following from our
analysis.

The classical least squares estimator was again shown to be very
sensitive to the existence of outliers - in our case to the existence of
only one outlying observation. This is a known fact but one should keep it
always in mind.

The Ll—norm estimator was not influenced by the outliers at all, but
the estimates of a and b were quite different from all the other ones and
were not enough reliable and satisfactory.

The a-trimmed least squares estimator yielded the best results. The
a-Winsorized least squares estimator was shown to be a good complement to
the a-trimmed least squares estimator serving as as indicator of big
outliers in example (iii) .

9. GENERAL SUMMARY AND CONCLUSIONS

In sections 2-6 of this paper several representants of the class of
robust L-estimators, i.e., the Ll-norm estimator (the regression median),
the a-trimmed and the a-Winsorized least squares estimators were
introduced and some properties of them summarized. Their behavior was
illustrated by an analysis of true medical data for which we considered
distortions corresponding to different practical situations. All results
obtained from the considered data fully coincide with those of Antoch
(1985) and Antoch et al.(1986) .

The estimators considered in this paper are generally not resistant
against leverage points. In our data we did not have any leverage points -
and therefore the obtained results are reasonable and show decidely the
superiority of the introduced estimators in comparison to the classical
least squares estimator when the data comprise big errors. In the case
when there are some leverage points in the elaborated data, we advise that
one should use modified estimators proposed by Antoch and Jure&kowi
(1985).

We did not consider in this paper the problem of confidence intervals
(confidence ellipsoid) for the introduced estimators nor the problem of
variable selection. These problems were elaborated, a.o., by Antoch
(1986).
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L - ESTYMATORY W MODELACH LINIOWYCH.
PODSTAWY. ASPEKTY OBLICZENIOWE. PRZYKLAD ZASTOSOWAN.

Streszczenie

W pracy przedstawiono kilka reprezentantow odpornych estymatoréw

parametréw modeli liniowych, a mianowicie estymatory w normie L oraz

a-obciete i a-winsoryzowane. Oméwiono algorytmy siuzace do ogiiczen
wymienionych estymatoréw. Pokazano przyktad medyczny w ktérym zastosowano
omawiane metody estymacji parametréw dla réwnania regresyjnego
wyznaczajgcego cis$nienie tetnicze krwi mierzone metoda tradycyjna w
zaleznosci od analogicznego ciénienia wyznaczonego automatycznie za pomocag

presurometru Avionics 1905.



